Tracing FMDV in UK outbreaks

The rationale behind using complete genome sequencing of Foot-and-Mouth Disease Virus as an epidemiological modelling tool

9 May 2008

E.Cottam@uea.ac.uk

FMDV evolution

- Rapid replication rate
- Large population sizes

• High error rate of viral polymerase in the order of 10-3 to 10-5 misincorporations per nucleotide copied

Fast adaptation and evolution

UK 2001 Outbreak

- 2030 infected premises culled
- 8131 culled as dangerous contacts
- > 6.5 million animals culled
- economic cost exceeding £6 billion

UK 2001 Outbreak

- Pan Asia O serotype
- • Identified 20th Feb 2001 in Cheale's abattoir Essex
- Source farm identified as Heddonon-the-Wall.
- Airborne spread to nearby sheep farm.
- Movement of sheep through markets one week before disease identified
- Subsequent outbreaks throughout the UK

Previous work

- The transmission of FMDV is poorly characterised, and information on the direction of farm to farm spread would greatly enhance our understanding and hence control.
- Broad scale genetic tracing of FMDV using VP1 sequences (633nt) between countries
- Attempt in Denmark at intra-epidemic tracing of FMDV using VP1 sequences only*
- Forensic genetic tracing for HIV, Hep C, SARS, Rhinovirus, Norovirus…….

Christensen, L.S., P. Normann, S. Thykier-Nielsen, J. H. Sorensen, K. de Stricker, and S. Rosenorn. **2005**. *Analysis of the epidemiological dynamics during the 1982-1983 epidemic of foot-and-mouth disease in Denmark based on molecular highresolution strain identification*. **J. Gen. Virol. 86: 2577-2584**

Project Introduction

- • Development of method for sequencing complete genome
- Investigation of FMDV evolution during the UK 2001 **Outbreak**
- \bullet Use of complete genome sequence data for forensic genetics of FMDV transmission

Complete genome sequencing

- Direct from epithelium
- RT-PCR
	- and the state of the 5 overlapping fragments
	- and the state of the 84 sequencing reactions
- Use of QIAGEN robot
- Complete sequence within 3 days

Observed Variation

- 52 nucleotide substitutions between source and final case
	- –8 were amino acid changes

• 83 variant nucleotides between Wales and Northumberland

Molecular clock

Nucleotide changes accrue linearly with time and are inherited

Cottam *et al* 2006 J Virol 80(22), 11274-82

Early animal movement transmission events between 5 farms.

Durham cluster of Infected Premises

Statistical parsimony analysis of sequence data from IPs by TCS

Difficult to determine transmission tree – 839808 different trees consistent with genetic data

- \bullet Restricted by date of cull
- • Individual farm infection profiles?
	- **Statistical** weighting for transmission tree – how confident are we?

•

Start of outbreak

> $Ii(t)$ probability that i th farm was infected at time *t* (discrete betadistribution)

5d

12d

2d

L(k) probability of incubation for *K* days prior to becoming infectious, gamma-distribution, 95% probability between 2 and 12 days

*date of confirmation minus oldest lesion minus 5d incubation

Probability that the *i*th farm is a source of infection at time *t* :

$$
F_i(t) = \sum_{j=0}^{C_i} \left(I_i(j) \cdot \left(\sum_{k=1}^{t-j} L(k) \right) \right)
$$

Start of outbreak

> $Ii(t)$ probability that *i*th farm infected at time *t (discrete betadistribution)*

Fi(t) probability that the *i*th farm is a source of infection at time *t*

Infection profiles of farms

Cottam *et al*. 2008 Proc Biol Sci. 22;275(1637):887-95.

From these infection profiles we can calculate a likelihood for each hypothesised transmission event

Likelihood that farm *i* infected farm *j* :

$$
\ell_{ij} = \sum_{t=0}^{C_j} I_i(t) \cdot F_j(t) / \sum_{\substack{k=1 \ k \neq i}}^{n} \sum_{t=0}^{C_k} I_i(t) \cdot F_k(t)
$$

It is now possible to determine the transmission tree with the highest likelihood from all the trees consistent with the genetic data

Most likely tree

Distribution of the number of changes that occur upon transmission of virus between farms (n=16)

Mean 4.2 (SD 2.1) nucleotide changes per transmssion event

Thus if the number of changes seen is outside this distribution, a missing intermediate farm would be suspected

Rate of nucleotide change seems to vary…….

• Previously linked mutation rate with time

• Was the rate of genetic evolution of FMDV in the epidemic due in part to the rate of transmission and spread of the virus?

2007 UK FMDV Outbreaks

Cottam *et al*. 2008 PLoS Pathogens 4(4): e1000050

2007 UK FMDV Outbreaks

- Synonymous substitution
- Non-synonymous substitution
- Non-synonymous substitution important in cell culture adaptation

August

Summary

- Complete genome sequencing data can assist in our understanding of the spread of FMDV
- Combining genetic and epidemiological data gives greater resolution.
- More research is needed to help refine the use of these data in real time.

Thank you

Don King David Paton

Nick Knowles Nigel Ferris Geoff Hutchings Andrew Shaw Jemma Wadsworth John Gloster

[Dan Haydon](http://www.gla.ac.uk/ibls/DEEB/) Gael Thébaud

[Sam Mansley](http://www.defra.gov.uk/)

