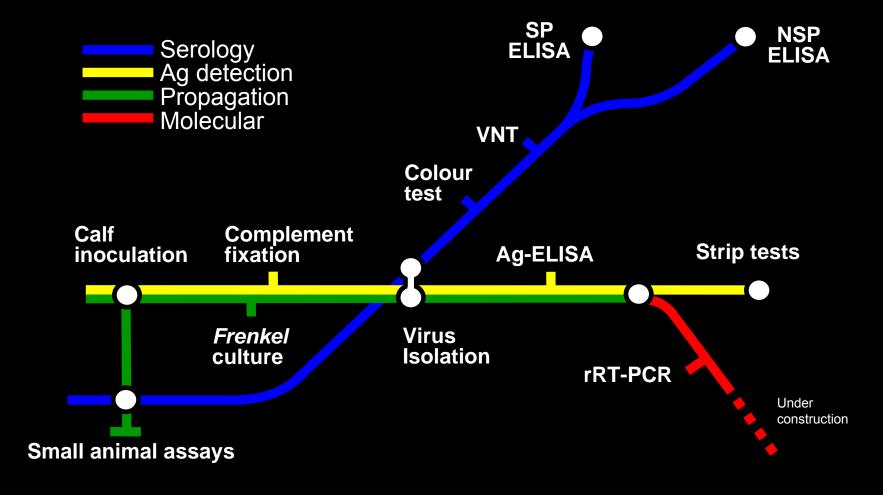

Foot-and-mouth disease diagnostics:

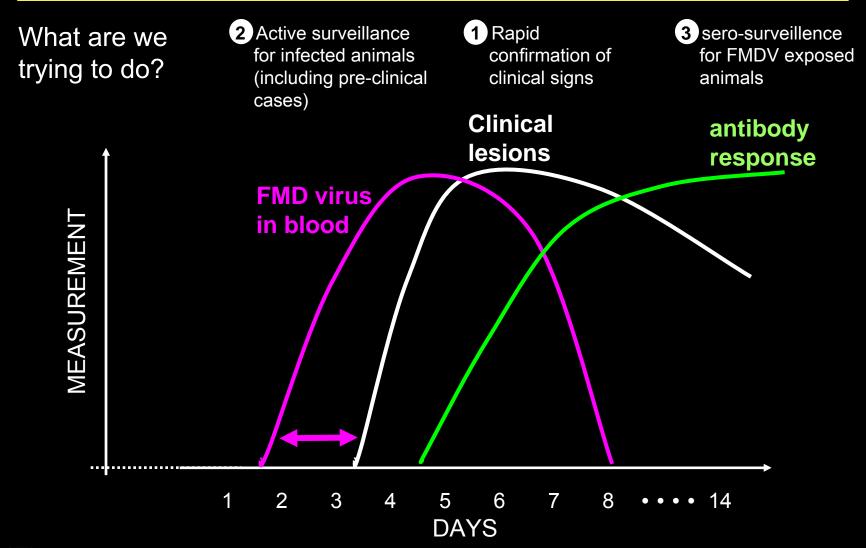
...are we there yet?

Donald King

Molecular Characterisation and Diagnostics Group, IAH



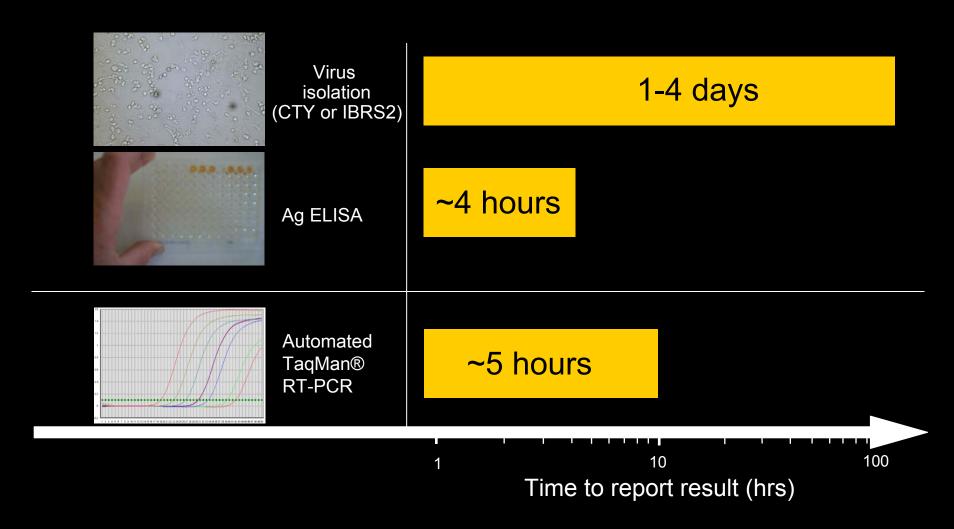
Where we've been

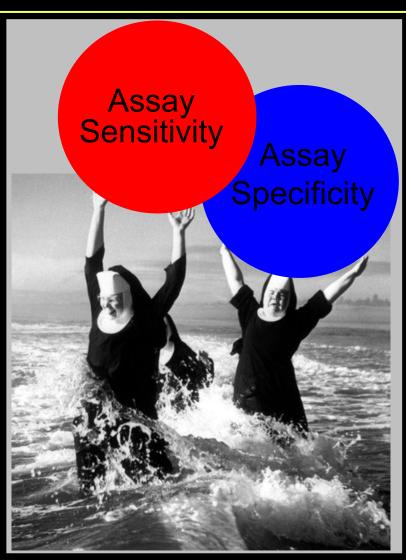


Laboratory diagnosis of FMD

Approaches:

- Detection of FMD virus
- Detection of FMDV-specific antibody (SP/NSP)
- Samples collected:
 - Tissue (vesicular epithelium)
 - Blood (sera or whole blood)
 - "probang" samples
 - Milk
 - Swabs from mucosal surfaces
 - Environmental samples (air samples etc..)


Diagnostic windows


Representative "in contact" cattle data from Alexandersen et al., 2003 and unpublished data from IAH

Current assays for FMDV detection

New assay formats: considerations

Routine use in WRL

- Reliability
- Performance
 - Limit of detection
 - Ability to correctly identify infected animals with diverse FMDV strains
- Speed
- Scalability
- Cost ?

The road ahead......

Foresight

Making the future work for you

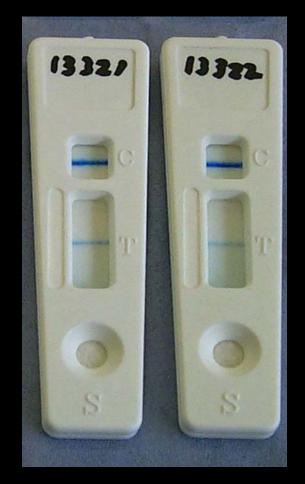
OFFICE OF SCIENCE AND INNOVATION Infectious Diseases: preparing for the future http://www.foresight.gov.uk/

What can we expect?

Technologies Improvements in:

- Computer powerCommunications
- Detector chemistries
- Sequencing capability

Drivers for Change


- Tools to support rapid decision making
 - "Point-of-care diagnostics"
 - Highly parallel assay formats for:
 - [i] differential diagnosis
 - [ii] strain characterisation

Lateral-flow devices FMDV Antigen detection

- Developed by IAH in collaboration with international partners
- Quick and simple to perform
- Pan-serotypic
- During 2007: used for rapid (<10 mins) confirmation of FMD in the field (IP7)
- Also useful in the Lab
- LFD marketed by Svanova

Validation data for pan-reactive LFD

 Sensitivity data generated for archived clinical samples

	ELISA		1F10 (gold-particle)	
Virus serotype	Fraction	%	Fraction	%
FMDV type O	121/126	96	119/129	92.2
FMDV type A	32/41	78	36/41	87.8
FMDV type C	14/24	58.3	15/24	62.5
FMDV type SAT 1	13/24	54.2	16/24	66.7
FMDV type SAT 2	28/32	87.5	18/32	56.3
FMDV type SAT 3	9/10	90	7/10	70
FMDV type Asia 1	36/40	90	39/40	97.5
Total	253/297	85.2	250/300	83.3

Rapid detection of FMDV in the field: Portable PCR platform

- Non-specialist user
 - Nucleic acid extraction
 - PCR set-up
 - Analysis
- 5 independent modules
- Battery operated
- Decontaminate by immersion
 - Field trial (Turkey) later in 2008
 - Platform for other livestock diseases

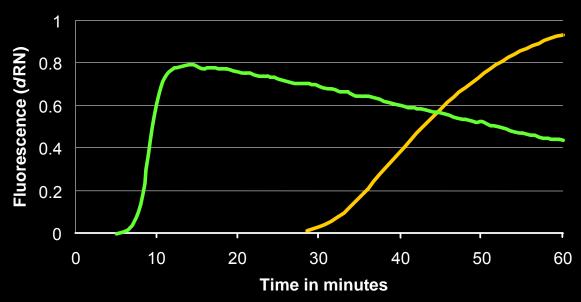
Rapid communication of results

Non-invasive sampling

- Air-samplers (MesoSystems)
- Hand held
- Simple-to-use

	BioCapture	BioBadge	
Cattle	10.24	11.23	
3 dpi	10.24		

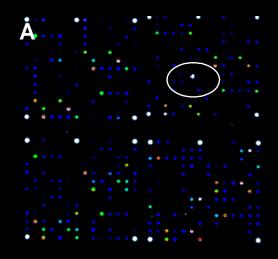
Log10 FMDV copies detected by rRT-PCR after 5 minute collection near animals infected with FMDV (serotype Asia-1) (Ryan et al., 2007)


- Integrated with FMDV detector?
- located in high-risk areas?

Alternative detector technologies

Isothermal amplification (RT-LAMP)

- Nucleic acid amplification at a single temperature
- No need for fragile precision instrumentation
- Basis of disposable device / cost effective
- More suitable for use in the field
- Very rapid, similar sensitivity to RT-PCR


Detection and characterisation?

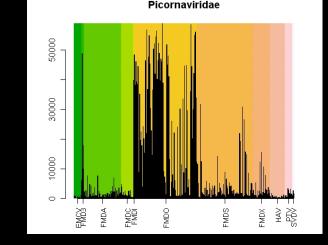
Viral MicroArray

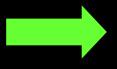
Potential Benefits:

- Thousands of experiments in parallel
- Differential diagnosis
- Viral Typing of FMDV isolates
- Clarification of mixed infections
- Portable formats emerging

O UKG 12/2001

DEFRA funded Biochip project (April 06-09)




http://www.bio-chip.co.uk/

Potential scenario for field diagnosis of FMD

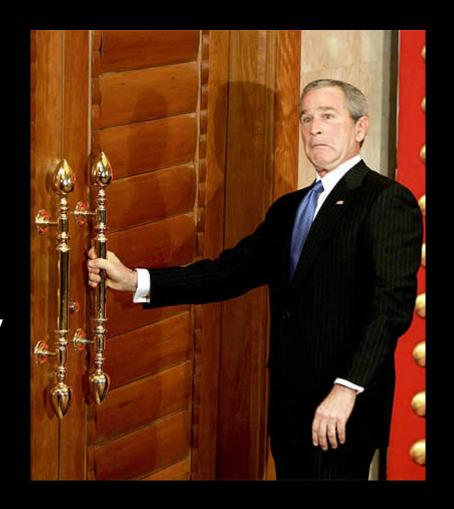
Veterinary visit

Clinical diagnosis

Lateral-flow devices (LFDs)
Sensitivity ~80%

Rapid confirmation of positives?

"Rapid" Molecular assays Sensitivity>95%



- Ability to confirm negatives
- Additional surveillance use
- Strain characterisation?

Future challenges

- Rapid development of technologies
- Key role of commercial partners
 - Is the market viable?
- Use in FMD-endemic countries
- Availability of technology
 - Provide freely vs control of local diagnosis/ reporting for notifiable diseases

Summary and Prospects:

- FMDV-specific assays have been developed to address wide range of clinical circumstances
 - Role of WRL for assay validation
- Likely to be increased demand for testing in future
 - Active surveillance for disease in high risk animals
 - Pre-clinical testing
 - Integration of different assay formats (virol/sero)
- Devolved and POC formats offer potential to significantly decrease assay time
 - Support of diagnosis based on clinical signs
 - Involvement of end-users and stakeholders is vital

Acknowledgements

- Scott Reid
- Katja Ebert
- Heather James
- Nigel Ferris
- Geoff Hutchings
- Juliet Dukes
- Nick Knowles
- Satya Parida
- John Gloster
- David Paton

